首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
航空   8篇
航天技术   17篇
航天   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
A laboratory experiment helps to understand the light scattering property of regolith like samples with known compositions and other physical parameters. The laboratory data so obtained can be compared with the existing in situ data on celestial objects like asteroids. Further, it may be analyzed with the help of various theoretical models to understand the light scattering processes from regolith more clearly. In this work we have performed laboratory based photometry of the light scattered from the surfaces of powdered alumina (Al2O3) at various tilt angles of the sample and at large phase angles, with the particles having diameter 0.3 μm. The wavelength of observation was 632.8 nm. These data have been fitted by a surface scattering model originally suggested by Hapke. Instead of using empirical Henyey–Greenstein phase function to fix the values of albedo and phase function to be used within Hapke formula, we have used Mie theory for the same. This approach helped us to determine the single particle properties such as particle diameter and complex refractive index from surface scattering phase curve alone. Mie theory depends only on the size parameter X(=2π(radius/wavelength)) and complex refractive index (nk) of the material. Since the absorption coefficient (k) for alumina is known to be very low but not exactly zero, the best fit to the experimental data was obtained by least square technique with k as a free parameter, as the other parameters are known. Finally, we compare our results with other published results and discuss the scope of application of the method we adopted.  相似文献   
12.
13.
The D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analysed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB). The cyclone Fani formed from a depression on 26th April, 2019 over the Bay of Bengal (Northeastern part of the Indian Ocean) and turned into an extremely severe cyclone with maximum 1-min sustained winds of 250 km/h on 2 May, 2019 which made landfall on 3 May, 2019. Out of six propagation paths, five propagation paths, except the JJI-CHB which was far away from the cyclone track, showed strong perturbations beyond 3σ level compared to unperturbed signals. Consistent good correlations of VLF signal perturbations with the wind speed and cyclone pressure have been seen for both the receiving stations. Computations of radio signal perturbations at CUB and CHB using the Long Wave Propagation Capability (LWPC) code revealed a Gaussian perturbation in the D-region ionosphere. Analysis of atmospheric temperature at different layers from the NASA’s TIMED satellite revealed a cooling effect near the tropopause and warming effects near the stratopause and upper mesosphere regions on 3 May, 2019. This study shows that the cyclone Fani perturbed the whole atmosphere, from troposphere to ionosphere and the VLF waves responded to the disturbances in the conductivity profiles of the lower ionosphere.  相似文献   
14.
This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.  相似文献   
15.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   
16.
The digital ionosonde located in Bhopal (23.2°N, 77.2°E), India has been used to investigate the responses of the Es layer in the equatorial ionization anomaly (EIA) crest to the total solar eclipse (TSE) of July 22, 2009. Results show the presence of intense Es layer during and after the eclipse period. The gravity waves induced by the solar eclipse propagated upward in the Es layer and produced the periodic disturbance. The results of the wavelet analysis display the presence of dominant oscillation of about 24–32, 16–20 and 8 min. The appearance of intense sporadic-E concomitantly with the signatures of gravity wave suggests that the wind shear introduced by the solar eclipse induced gravity wave might be the plausible mechanism behind the intensification of Es-layer ionization.  相似文献   
17.
This is the second part of the investigation, the first part being “stability”. It is demonstrated that by monitoring the deformations of the flexible elements of a satellite, the effectiveness of the satellite control system can be increased considerably with the same given control system. A simple model of a flexible satellite was analyzed in the first part of this work. The same model is used here for digital computer simulations.  相似文献   
18.
The effect of solar cycle and seasons on the daytime and nighttime F-layer ionization has been investigated over the equatorial and low-latitude region during 19th (1954–1964) and 20th (1965–1976) solar cycle. The F-layer critical frequency (foF2) data observed from the three Indian Ionosonde stations has been used for the present study. The dependence of foF2 on solar cycle has been examined by performing regression analysis between the foF2 values and R12 (twelve month running average sunspot number). The result shows that the magnitude of the cycle, seasons and the location of station has considerable effects on foF2. There is a significant nonlinear relationship between the foF2 values and R12 during 19th solar cycle as compared to 20th solar cycle. Further, the nighttime saturation effect is prominently seen during the 19th solar cycle and summer season. It is also observed that the most profound saturation effect appears at the equatorial ionization anomaly crest region. Seasonally, it is seen that all the stations exhibits semiannual anomaly. The phenomenon of winter anomaly decays as we move higher along the latitude and is prominently seen during the intense solar activity.  相似文献   
19.
Occurrence of Spread F is more or less a daily phenomenon in the equatorial and low latitudinal stations during high to moderate sunspot number years. In this paper efforts have been made to identify possible precursors of Equatorial Spread F (ESF) using the Total Electron Content (TEC) data of seven GAGAN (GPS Aided Geo Augmented Navigation) stations in India during the two equinoxes of moderate sunspot number year 2004. Large Scale Periodic Structures found prior to TEC bite out can be taken as possible precursors to ESF. A threshold value of the peak to peak amplitude of this wave structure is chosen 2.6 TEC unit above which there is a possibility of ESF or TEC bite out with S4 > 0.26.  相似文献   
20.
In terms of hydro-geomorphic characteristics, catchments in Peninsular India remained mostly unexplored except a few regional and local works that deal with tectonic, structural and paleo-climatic control on geomorphology. Catchment scale morphometric analyses deliver insights into dynamics, erosion capacity, probability of flood occurrence, lithological and structural control, and genetic response to the tectonics. The present study aimed to comprehend hydro-geomorphic characteristics of 12 major catchments in Peninsular India through GIS-based morphometric analysis. A total of 25 morphometric parameters were computed and several statistical analyses performed in establishing inter-correlation and classification of Indian rivers. Most of the rivers in Peninsular India were found 7th to 9th order catchments. Almost all basins showed a moderate relief ratio, hypsometric integral, ruggedness etc. Cauvery, Baitarni, and Brahmani showed exceptionally steeper gradient, high relief ratio, LS factor, and ruggedness index, which indicated higher erosion potential. Correlation among landscape variables revealed moderate scale dependency of few relief factors. Baitarni, Brahmani and Narmada showed higher hypsometric integral. A strong positive association between hypsometric integral and sediment yield suggested critically high erosion potential in catchments with high integral values. The present study provides some generic insights into the hydro-geomorphic characteristics with dissimilarity in lithology in Peninsular Indian catchments as a whole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号